
Intel Assembly Programming Calling Convention

To allow separate programmers to share code and develop libraries for
use by many programs, and to simplify the use of subroutines in
general, programmers typically adopt a common calling convention. The
calling convention is a strict protocol about how to call and return
from subroutines. For example, given a set of calling convention
rules, a programmer need not examine the definition of a subroutine
to determine how parameters should be passed to that subroutine.
Furthermore, given a strict set of calling convention rules, high-
level language compilers can be made to follow the rules, thus
allowing assembly language routines and high-level language routines
to call one another.

In practice, many calling conventions are possible. Let's examine the
widely used C-language calling convention. Strictly adhering to this
convention will allow you to write assembly language subroutines that
are safely callable from C (and C++) code, and will also enable you
to call C library functions from your assembly language code.

The C calling convention is based heavily on the use of the hardware-
supported program stack. It relies on the push, pop, call, and ret
instructions. Parameters are passed to the subroutine by placing
them on the stack. Any register to be used as a local variable
internally by subroutines must have their contents first saved to the
stack (to protect the caller's value).

The calling convention is broken into two sets of rules. The first
set of rules is employed by the caller of the subroutine, and the
second set of rules is observed by the subroutine itself (the
callee). It should be emphasized that a single mistake in the
observance of these rules quickly result in fatal program errors
since the stack will be left in an inconsistent state; thus
meticulous care should be used when implementing the calling
convention in your own subroutines.

A good way to visualize the operation of the calling convention is to
draw the contents of the stack during subroutine execution. The
diagram (Unix Program Stack) provided depicts the contents of the
stack during the execution of a subroutine. Let's assume an example
of three parameters and using three local variables. The cells
depicted in the stack are 64-bit memory locations, thus the memory
addresses of the cells are 64 bits (8 bytes) apart. The stack pointer
(RSP) is initially set by the OS. The first parameter resides at an
offset of 16 bytes from the base pointer (RBP). Above (,in the
positive direction depicted below the base pointer) are the
parameters on the stack used by the call. They are placed below the
return address, thus the first parameter is an extra 8 bytes away
from the base pointer (RBP). When the ret instruction is used to
return from the called subroutine back to the caller routine, it will

branch (jump) to the return address that had been stored in that
specific stack location (RSP+ 8).

Caller Rules

To pass control to a subroutine, the caller should:

1) Before calling a subroutine, the caller should save the
contents of any registers that the subroutine will use to pass
back a return value. The remaining registers become the
responsibility of the called subroutine to save, since it may
modify them as local variables. The subroutine must save the
values in these registers by pushing them onto the stack (so
they can be restored just prior to the subroutine returning
control to the caller.

2) To pass parameters to the subroutine, push them onto the
stack before the call. The parameters should be pushed in
reverse order (i.e. last parameter first). The top of the stack
is pointed to by the RSP register. Since the stack grows down
(in the positive direction through greater memory locations),
the first parameter will be stored at the lowest address. (This
reverse order of parameters was historically used to allow
functions to be passed a variable number of parameters).

3) To call the subroutine, use the call instruction. The call
instruction places the return address on top of the parameters
on the stack, and then branches to the subroutine location.
Upon transfer of control, the subroutine, should follow the
callee rules below.

After the subroutine returns control, the caller can expect to find
the return value of the subroutine, if any, in the register(s)
documented by the author of the subroutine. To restore the machine
state, the caller should:

1) Remove the parameters from stack. This restores the stack to
its state before the call was performed. The top of the stack
is reset to its location prior to the call setup.

2) Recover the value, if any, returned by the subroutine.

3) Restore the contents of any caller-saved registers by popping
them off of the stack. The caller can assume that no other
registers were modified by the subroutine.

Example
The code below shows a function call that follows the caller rules.
The caller is calling a function myFunc that takes three integer
parameters. First parameter is in RAX, the second parameter is the
constant 216; the third parameter is in memory location var.

push [var] ; Push last parameter to stack first
push 216 ; Push the second parameter
push rax ; Push first parameter last
call myFunc ; Call the function
add rsp, 24 ; Rid stack and deallocate 3 entries

Note in this example, that after the call returns, the caller cleans
up the stack using the add instruction. We have 24 bytes (3
parameters * 8 bytes each) on the stack, and the stack grows down (in
the positive direction). Thus, to get rid of the parameters, we can
simply add 24 to the stack pointer. This operation resets the stack
pointer to its original value before the call.

The result produced by myFunc is now available for use in the return
register. The values of any other registers may have been changed by
the subroutine, but it was the subroutine's job to recover their
contents prior to returning control to the caller.

Callee Rules

The definition of the subroutine should adhere to the following rules
at the beginning of the subroutine:

1) Push the value of RBP onto the stack, and then copy the value
of RSP into RBP using the following instructions:

 push rbp
 mov rbp, rsp

This initial action maintains the base pointer, RBP. The base
pointer is used by convention as a point of reference for
finding parameters and local variables on the stack. When a
subroutine is executing, the base pointer holds a copy of the
stack pointer value from when the subroutine started executing.
Parameters and local variables will always be located at known,
constant offsets away from the base pointer value. We push the
old base pointer value at the beginning of the subroutine so
that we can later restore the original RBP base pointer value of
the caller when the subroutine returns control. Remember, the
caller is not expecting the subroutine to change the value of
the base pointer. We then move the stack pointer into RBP to
obtain our point of reference for accessing parameters and local
variables.

2) Next, allocate local variables by making space on the stack.
Recall, the stack grows down, so to make space on the top of the
stack, the stack pointer should be decremented (negative
direction). The amount by which the stack pointer is decremented
depends on the number and size of local variables needed. For
example, if 3 local integers (8 bytes each) were required, the
stack pointer would need to be decremented by 24 to make space
for these local variables (i.e., sub rsp, 24). As with
parameters, local variables will be located at known offsets
from the base pointer.

3) Next, save the values of the callee-saved registers that will
be used by the function. To save registers, push them onto the
stack. Any callee-saved registers will be preserved by the
calling convention.

After these three actions are performed, the body of the subroutine
may proceed. When the subroutine returns control, it must follow
these steps:

1) Place the return value in the documented register.

2) Restore the old values of any callee-saved registers. The
register contents are restored by popping them from the stack.
The registers should be popped in the reverse order that they
were pushed.

3) De-allocate local variables. The obvious way to do this might
be to add the appropriate value to the stack pointer (since the
space was allocated by subtracting the needed amount from the
stack pointer). In practice, a less error-prone way to
deallocate the variables is to copy the value in the original
base pointer into the stack pointer:

 mov rsp, rbp

This works because the base pointer always contains the value
that the stack pointer contained immediately prior to the
allocation of the local variables.

4) Immediately before returning, restore the caller's base
pointer value by popping RBP off the stack. Recall, that the
first thing we did on entry to the subroutine was to push the
base pointer to save its value.

5) Finally, return to the caller by executing a ret instruction.
This instruction will find and remove the appropriate return
address from the stack.

Note that the callee's rules fall cleanly into two halves that are
basically mirror images of one another. The first half of the rules
apply to the beginning of the function, and are commonly said to
define the prologue to the function. The latter half of the rules
apply to the end of the function, and are thus commonly said to
define the epilogue of the function.

Example
Here is an example function definition that follows the callee rules:

myFunc equ $
 ; Subroutine Prologue
 push rbp ; Save the old base pointer value.
 mov rbp, rsp ; Set the new base pointer value.
 sub rsp, 8 ; Make room one 8-byte nonreg local variable
 push rdi ; Save the values of registers that function
 push rsi ; may modify internally (say RDI and RSI)
 :
 ; Subroutine Body Statements
 ; lets assume that some calculation puts result in RAX for
 ; return to caller.

 ; Subroutine Epilogue
 pop rsi ; Recover register values
 pop rdi
 mov rsp, rbp ; Deallocate local variables
 pop rbp ; Restore the caller's base pointer value
 ret ; result is in the RAX register

The subroutine prologue performs the standard actions of saving a
snapshot of the stack pointer in RBP (the base pointer), allocating
local variables by decrementing the stack pointer, and saving local
work register values on the stack.

In the body of the subroutine we can see the use of the base pointer.
Both parameters and local variables are located at constant offsets
from the base pointer for the duration of the subroutines execution.
In particular, we notice that since parameters were placed onto the
stack before the subroutine was called, they are always located below
the base pointer (at higher addresses) on the stack. The first
parameter to the subroutine can always be found at memory location
RBP + 16, the second at RBP + 24, the third at RBP + 32. Similarly,
since local variables are allocated after the base pointer is set,

they always reside above the base pointer (at lower addresses) on the
stack. In particular, the first local variable is always located at
RBP - 8, the second at RBP - 16, and so on. This conventional use of
the base pointer allows us to quickly identify the use of local
variables and parameters within a function body.

The function epilogue is basically a mirror image of the function
prologue. The caller's register values are recovered from the stack,
the local variables are deallocated by resetting the stack pointer,
the caller's base pointer value is recovered, and the ret instruction
is used to return to the appropriate code location in the caller.

	Intel Assembly Programming Calling Convention
	Caller Rules
	Callee Rules

