
Meltdown and Spectre Hack

Recent press reports (January 2018) talk about a newly discovered form of security threat
that involves attackers exploiting common features of modern microprocessors (aka chips)
that power our computers, tablets, smartphones, and other gadgets. These attacks, known as
“Meltdown” and “Spectre”, are getting a lot of attention. People are (rightly) concerned, and
it’s of course very important to apply all of the necessary software updates that have been
carefully produced and made available. Technology leaders are working together to address
these exploits and minimize the risk of potential attacks.

To get going, let’s understand a bit about “speculative execution” by looking at an everyday
analogy. Suppose a regular customer visits the same coffee shop and orders the same
caffeinated beverage every morning. Over time, the customer gets to know the baristas, who
become familiar with the customer’s order. Seeking to offer good service (and save their
valued customer some time standing in line) the baristas eventually decide to begin preparing
the customer’s order when they wave at them as they enter through the front door. But one
day, the customer changes their order. Now the barista has to throw away the previously
prepared coffee and make a new one while the customer waits.

Taking the analogy one step further, suppose the baristas know the customer’s name, and
they like to write that name using a permanent marker on their cup. When they speculatively
prepare the usual beverage, they write the customer’s name on the cup. If the customer
comes in with a different order, the speculated cup is thrown away along with its contents. But
in so doing, the cup’s personally identifiable information is briefly visible to anyone watching.
This coffee shop scenario involves speculation. The staff doesn’t know for sure when the
customer comes in that they’re going to order a latte or an Americano, but they know from
historical data what the customer usually orders and they make an educated guess to save
the customer waiting. Similar speculation happens throughout our everyday lives because
such guesses often turn out to be true, and we can get more done in the same amount of time
as a result. It’s like this with our computers. They use a technique known as “speculative
execution” to perform certain processing operations before it is known for certain that those
operations will be required, on the premise that these guesses often turn out to save time.

In the case of computers, speculative execution is used to decide what to do when confronted
by a test like “if A, do this; otherwise, do that”. We call these tests conditions, and the code
that executes as a result is part of what we term a conditional branch. A branch just means a
section of the program that we choose to run in response to whatever the result of the
condition turns out to be. Modern computer chips have sophisticated “branch predictors” that
use fancy algorithms to determine what the result of the conditional test is likely to be while
that test is still being calculated. In the interim, they speculatively execute code in the branch
that seems to be most likely to run. If the guess turns out to be right, the chip appears to run
faster than waiting for the test to complete. If the guess is wrong, the chip has to throw away
any speculative results and run the other branch. Branch predictors are often over 99%
accurate at guessing.

As you can see, the potential performance benefit from a chip speculatively executing the
correct branch of code is significant. Indeed, speculative execution is one of the many
optimizations that have helped to dramatically speed up our computers over the past couple

of decades. When implemented correctly, the resulting performance benefit is substantial. The
source of the newly discovered problems come from the chip design attempts to further
optimize by assuming that speculation process is a black box that is completely invisible to
outside observers (or bad guys).

Conventional industry wisdom was that whatever happened during the process of speculation
(known as a “speculative execution window”) was either later confirmed and the results were
used by the program, or it was not used and completely discarded. But it turns out that there
are ways attackers can view what happened within the speculation window and manipulate
the system as a result. An attacker can also steer the behavior of branch predictors to cause
certain code sequences to run speculatively that should never normally have been executed.
We expect these vulnerabilities and other similar flaws which could exploit speculative
execution to lead to fundamental changes in the way that future chips are designed so that
we can have speculative execution without security risks.

Let’s dive a bit deeper into the attacks, starting with Meltdown (variant 3) which received a lot
of attention because of its broad impact. In this form of attack, the chip is fooled into loading
secured data during a speculation window in such a way that it can later be viewed by an
unauthorized attacker. The attack relies upon a commonly-used, industry-wide practice that
separates loading in-memory data from the process of checking permissions. Again, the
industry’s conventional wisdom operated under the assumption that the entire speculative
execution process was invisible, so separating these pieces wasn’t seen as a risk. In
Meltdown, a carefully crafted branch of code first arranges to execute some attack code
speculatively. This code loads some secure data to which the program doesn’t ordinarily have
access. Because it’s happening speculatively, the permission check on that access will
happen in parallel (and not fail until the end of the speculation window), and as a
consequence special internal chip memory known as a cache becomes loaded with the
privileged data. Then, a carefully constructed code sequence is used to perform other
memory operations based upon the value of the privileged data.

While the normally observable results of these operations aren’t visible following the
speculation (which ultimately is discarded), a technique known as cache side-channel
analysis can be used to determine the value of the secure data. Mitigating Meltdown involves
changing how memory is managed between application software and the operating system.
We introduce a new technology, known as KPTI (Kernel Page Table Isolation), which
separates memory such that secure data cannot be loaded into the chip’s internal caches
while running user code. Taking extra steps every time application software asks the
operating system to do something on its behalf (we call these “system calls”) results in a
performance hit. The degree of performance hit varies roughly in line with how frequently an
application needs to use such operating system services.

The Spectre attack has two parts. The first (variant 1) has to do with “bounds check” violation.
Once again, when speculatively executing code, the chip might load some data that is later
used to locate a second piece of data. As part of a performance optimization, the chip might
attempt to speculatively load the second piece of data before it has validated that the first is
within a defined range of values. If this happens, it is possible to arrange for code to execute
speculatively and read data it should not into the system caches, from where it can be
extracted using a side-channel attack similar to the one discussed before.

Mitigating the first part of Spectre involves adding what we call “load fences” throughout the
kernel. They prevent the speculation hardware from attempting to perform a second load
based upon a first load. These require small, trivial, and not particularly performance-
impacting changes throughout the kernel source. Our toolchain team has developed some
tooling and worked with others to help determine where these load fences should be located.

The second part of Spectre (variant 2) is in some ways the most interesting. It has to do with
“training” the branch predictor hardware to favor speculatively executing pieces of code over
those it should be executing. A common hardware optimization is to base the behavior of a
given branch choice upon the location in memory of the branch code itself. Unfortunately, the
way in which this memory location is stored isn’t unique between an application and the
operating system kernel. This allows for the predictor to be trained to speculatively run
whatever code the attacker would like. By carefully choosing a “gadget” (existing code in the
kernel that has access to privileged data) the attacker can load sensitive data in the chip
caches, where the same kind of side-channel attack once again serves to extract it.

One of the biggest problems posed by this second part of Spectre is its potential to exploit the
boundary between the operating system kernel and a hypervisor, or between different virtual
machines running on the same underlying hardware. The branch predictor can be trained by
one virtual machine to cause privileged code in the hypervisor (or another virtual machine
instance) to access trusted hypervisor data which can be extracted using a side channel. This
poses a significant risk to private and public cloud environments running unpatched servers.

Mitigating this second part of Spectre requires that the operating system (selectively) disable
branch prediction hardware whenever a program requests operating system (system call) or
hypervisor services, so that any attempt by malicious code to train the predictor won’t carry
over into the operating system kernel, the hypervisor, or between untrusted virtual machines
running on the same server. This approach works well, but it comes at a performance penalty
that is not insignificant.

Many OS manufacturers' patches will default to implementing the security change and
accepting the performance impact.

Taken from:
January 5, 2018
Jon Masters, chief ARM architect, Red Hat

